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ABSTRACT. We prove a characteristic two version of the famous criterion of Artin and
Mumford for irrationality of conic bundles. On the one hand, combined with the patho-
logical behaviour of conic bundles in characteristic two, this allows us to construct easier
and more explicit examples of irrational conic bundles. On the other hand, degeneration
techniques à la Voisin allow to deduce irrationality results in characteristic zero.
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1. INTRODUCTION

The Artin–Mumford criterion for irrationality of conic bundles. One of the fun-
damental problem in algebraic geometry is to understand whether a variety X over an
algebraically closed field k is stably rational, i.e. whether X × Pn is birational to Pm for
some m,n ∈ N. One of the first and most influential stable irrationality criterion, has
been proved by Artin and Mumford. Since it is the starting point of this paper, we recall
it now.

Theorem 1.1. [AM72] Let k be an algebraically closed field of characteristic different
from 2. Let f : X → B be a flat conic bundle over k between smooth, proper and
connected k-varieties. Assume the following.

(1) The discriminant is disconnected.
(2) There are two distinct connected components of the discriminant on which all

the fibers are reduced and such that the conic bundle over each of them is not a
product.

(3) The group H3
ét(B,Z2) vanishes.

Then X is not stably rational.

Since then, many other techniques have been developed to study rationality problems
and we focus here on two main approaches.
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On the one hand, Theorem 1.1 has been extended via the introduction of unramified co-
homology (with Z/2-coefficients) by Colliot-Thélène and Ojanguren [CTO89]. This has
been further developed and combined with degenerations techniques à la Voisin [Voi15,
CTP16], leading to striking applications (culminating with the work of Schreieder [Sch19]).
These techniques proved to be very powerful, although constructing examples with them
becomes tricky. Also, these results do not work in characteristic 2, since 2-torsion étale
cohomology is quite badly behaved.

On the other hand, techniques using reduction modulo a prime number p, especially
with p = 2, have been developed by Kollar [Kol95] and used by Totaro [Tot16], by
exploiting pathological behaviour of differential forms in positive characteristic. These
techniques have the advantage of having a more geometric flavour and of being more
elementary in nature.

The Artin–Mumford criterion in characteristic 2. In this paper, we take a first step
in trying to combine both approaches, by extending Theorem 1.1 to characteristic 2 and
showing that this extension is often easier to apply to concrete examples. Moreover, using
degeneration techniques à la Voisin, we deduce irrationality results in characteristic zero;
see for instance Theorem 1.4. Our main result is the following.

Theorem 1.2. Let k be an algebraically closed field of characteristic 2. Let f : X → B
be a flat and dominant conic bundle over k, with smooth generic fiber, between smooth,
proper and connected k-varieties. Assume the following.

(1) The discriminant is disconnected.
(2) There are two disctinct connected components of the discriminant of f , each of

which contains a fiber which is not reduced.
(3) The group H2(B,Ω1

B/k) vanishes.

Then X is not stably rational.

Comparison between the two Artin–Mumford criteria. Let us enlighten the main
differences between Theorem 1.1 and Theorem 1.2. First of all, in our result, the field
k is of characteristic 2, so it covers the case left open by Theorem 1.1. Secondly, and
most importantly, the assumptions (2) are different. In practice, checking assumption
(2) in Theorem 1.1 is quite complicated since one has to understand the behaviour of
the fibers in a family, while assumption (2) in Theorem 1.2 is immediate to check in
concrete examples. There is also a version of Theorem 1.2 with reduced fibers over the
discriminant (see Theorem 5.2), which is more similar to the original statement of Artin
and Mumford, but one shall consider Theorem 1.2 as more useful in practice, because no
hypothesis on the nontriviality of the family appears.

One could also state and prove Theorem 1.2 in other characteristics, but construct-
ing nonreduced fibers there is much harder. Indeed, locally in B, the conic bundle has
equation

αa2 + βb2 + γc2 + α′bc+ β′ac+ γ′ab = 0

for some local functions α, β, γ, α′, β′, γ′ onB. In characteristic two, the locus of nonre-
duced fiber is simply given by the equations α′ = β′ = γ′ = 0, while in characteristic
different from 2 it has a complicated expression (see [Tan24, Definition 3.6]).

The invariant used by Artin and Mumford to obstruct rationality is the 2-torsion in
étale cohomology. It turns out that the nonzero class they construct is algebraic. In
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our case we follow their approach and construct a similar 2-torsion algebraic class. The
only cohomology in characteristic two which might have nonzero 2-torsion is crystalline
cohomology, hence we have to work there. This adds various technical complications,
since one has to deal with differential forms on conic bundles in characteristic 2. To do
this, we will need to work with complexes and to control the difference between relative
and asbolute diffrential forms (see Proposition 4.4).

Applications. We construct explicit examples to which Theorem 1.2 applies. Given the
special shape of the discriminant in characteristic 2, this can be achieved quite easily.

Theorem 1.3. Let k be a field of characteristic two. LetB = P2 with coordinates x, y, z.
Consider the conic bundle f : X → B defined in O⊕ O(1)⊕ O(3) by

a2 + xab+ yzb2 + (x(y3 + z3) + y2z2)bc+ (y6 + z6 + x4yz + xz5 + xy5)c2 = 0.

Then X is not stably rational.

From Theorem 1.3 and the other examples we construct, we deduce the following.

Theorem 1.4. Let k be a field of characteristic zero or two. A very general conic bundle
in P(O⊕ O(1)⊕ O(3)) over P2

k with values in O has no decomposition of the diagonal,
hence it is not stably rational.

Similarly, a very general conic bundle in P(O(1)⊕O(1)⊕O(3)) over P2
k with values

in O(1) has no decomposition of the diagonal, hence it is not stably rational.

As far as we are aware of, this result is new in characteristic two, but it seems likely
that it can be proved using other obstructions in characteristic zero. We believe that
much more interesting examples can be constructed in characteristic two, hence giving
new results in characteristic zero, see for instance Remark 8.9.

Remark 1.5. A different irrationality criterion for conic bundle in characteristic 2 has
been proved in [ABBGvB21]. Compared to the geometric Theorem 1.2, their criterion is
closer to the unramified cohomological interpretation of Theorem 1.1 given in [CTO89].
Since unramified cohomology with 2-torsion coefficients does not work well in charac-
teristic 2, their criterion is quite involved to check in practice and it needs the explicit
construction of an auxiliary conic bundle. In Example 8.8, we show how to interpret
their main concrete application via Theorem 1.2.

Organization of the paper. Section 2 contains some conventions. Section 3 recalls the
definition of conic bundle and the one of its discriminant. This is subtle in characteristic
two. Section 4 is a technical section doing computations on the cohomology of sheaves
of differential forms on conic bundles. These computations are used in Section 5 where
the crystalline version of the Artin–Mumford criterion is stated and proved. Section 6 ex-
plains a birational transformations which makes the disconnectedness hypothesis (1) of
Theorem 1.2 easier to be checked. In Section 7 we recall the notion of the decomposition
of the diagonal, its relation to rationality problems and explain why torsion in crystalline
cohomology obstructs the decomposition of the diagonal. Putting this discussion together
with the crystalline Artin–Mumford criterion, we give geometric conditions that obstruct
rationality. Finally, in Section 8 we give explicit examples where these geometric con-
ditions are satisfied and deduce irrationality results for some very general varieties in
characteristic zero and two. We also discuss there examples one might hope to construct
in the future.
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2. NOTATION AND CONVENTION

Throughout the paper we use the following conventions.
(1) A variety is a separated scheme of finite type over a field. When the field k is

specified we call this a k-variety.
(2) A conic over a field k is a subscheme of P2

k defined by a global section of O(2).
(3) A conic which is geometrically isomorphic to xy = 0 in P2, is a cross. A conic

which is geometrically isomorphic to x2 = 0 in P2, will be called a double line.
See also Definition 3.4.

(4) If k is a field and F is a coherent sheaf on a proper k-scheme S, we write hiS(F)
for the dimension of the k-vector space Hi(S,F) and we drop the index S if it is
clear from the context.

(5) If X is a k-variety and E is vector bundle of rank r on X , we write P(E) → X
for the associated projective bundle with fibers Pr−1.

(6) The Chow groups CH(X) of algebraic cycles modulo rational equivalence of a
variety X has always integral coefficients.

(7) For an object X (a variety, a sheaf,. . .) living on some base B, we write XS for
the base change of X to S when the map from S to B is clear.

(8) For a prime number p and an abelian group M , the p-torsion of M is denoted by
M [p].

(9) IfX is a variety over a field k of positive characteristic, Hi
crys(X) := Hi

crys(X,W (k))
denotes the crystalline cohomology with integral coefficients.

(10) The projective plane will sometimes be the base and sometimes be a fiber of a
fibration. With the hope of clearly distinguishing the two situations, we use a, b, c
as variables on the fiber and x, y, z as variables on the base.

3. DISCRIMINANT OF CONIC BUNDLES IN CHARACTERISTIC TWO

This section gives generalities on conic bundles with particular emphasis to charac-
teristic two. This is all taken from [ABBGvB21] and [Tan24] and recalled here for the
convenience of the reader. We fix an algebraically closed field k and a connected smooth
k-variety B.

Quadratic forms on rank 3 vector bundles. Let E be a rank 3-vector bundle on B. Let
S2(E) ⊂ E⊗E be the set of symmetric tensors and E⊗E � S2(E) the symmetric power
of E. By construction, there are identifications S2(E)∨ ' S2(E∨).

Definition 3.1. Let L be a line bundle on B. A quadratic form on E with values in L is
a morphism q : S2(E)→ L.

By duality, giving a quadratic form on E with values in L is equivalent to give a global
section of S2(E∨)⊗ L.

Remark 3.2. Classically, quadratic forms are maps q : E → L satisfying q(av) = a2v
for local sections a of OB and v of E and such that the map ϕ : E × E → L defined on
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local sections by ϕ(x, y) := q(x + y) − q(y) − q(x) is bilinear. To recover this notion
from the one defined before, one observes that the natural map sending q : S2(E) → L

to the map q̃ : E → L defined on local section by q̃(v) = q(v ⊗ v), gives a bijection
between classical quadratic forms and the one we defined (see e.g. [Woo09, Proposition
2.6.1] or [Aue11, Lemma 1.1]).

Conic bundles. Let q : S2(E)→ L be a quadratic form on a vector bundle E on B with
values in a line bundle L on B and let π : P(E)→ B be the canonical map. Since

H0(B,S2(E∨)⊗ L) ' H0(B, π∗(OP(E)(2)⊗ π∗L)) ' H0(P(E),OP(E)(2)⊗ π∗L),

every nonzero quadratic form q : S2(E) → L defines a closed subscheme Xq ⊂ P(E)
whose natural morphism fq : Xq → B has generic fiber a conic.

Definition 3.3. Let f : X → B be a morphism between k-varieties. We say that f is a
conic bundle if there exists a rank 3 vector bundle E on B, a line bundle L on B and a
quadratic form q : S2(E) → L such that f : X → B is isomorphic to fq : Xq → B. In
this case, we say that X is a conic bundle in P(E) over B with values in L.

Discriminant and locus of double lines. Let a, b, c be the coordinates in P2. Over an
algebraically closed field, up to a change of coordinates, a conic C is defined by one of
the following equations (see e.g. [ABBGvB21, Corollary 2.5]):

(1) a2 + bc; (2) ab; (3) a2.

In case (1), C is smooth. In case (2), C it is the wedge of two P1. In case (3), C is
irreducible but not reduced.

Definition 3.4. With the above notations, a conic of type (2) will be called a cross and a
conic of type (3) will be called a double line.

Let f : X → B be a flat conic bundle. We will denote by ∆ the discriminant of f (the
locus of singular fibers) and by Σ the locus of double lines of f .

Remark 3.5. In [Tan24, Definition 3.4-3.10], Tanaka defined closed subschemes Σ ⊆
∆ ⊆ B such that Xb is singular if and only if b ∈ ∆ (i.e. the geometric fiber is of type
(2) or (3)) and the geometric fiber is moreover of type (3) if and only if b ∈ Σ. In general,
both ∆ and Σ might be nonreduced or might be equal to B. If X → B is generically
smooth, then ∆ is a Cartier divisor inB. For our purposes, we will only need the reduced
structure of ∆ and Σ.

Direct sum of line bundles. Assume that E ' Ea ⊕ Eb ⊕ Ec is the direct sum of three
line bundles Ei and write Ei,j := Ei ⊗ Ej . In this case we have

S2(E) ' Ea,a ⊕ Eb,b ⊕ Ec,c ⊕ Ea,b ⊕ Ea,c ⊕ Eb,c

and
S2(E∨) ' E∨a,a ⊕ E∨b,b ⊕ E∨c,c ⊕ E∨a,b ⊕ E∨a,c ⊕ E∨b,c

Hence to give a quadratic form on E with values in L, is equivalent to give a collection
of six global sections si,j ∈ H0(B,E∨i,j ⊗ L) for i ≤ j. We represent this situation with
a ”half” matrix:

E∨a E∨b E∨c
E∨a sa,a
E∨b sa,b sb,b
E∨c sa,c sb,c sc,c
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corresponding to the conic bundle of equation

sa,aa
2 + sb,bb

2 + sc,cc
2 + sa,bab+ sa,cac+ sb,cbc = 0.

In this case the discriminant divisor is given by the zero locus of

∆ = 4sa,asb,bsc,c + sa,bsb,csa,c − s2
a,bsc,c − s2

a,csb,b − s2
b,csa,a = 0.

The locus of double lines Σ is much more complicated in general. See [Tan24, Proposi-
tion 3.12] for an explicit formula.

Remark 3.6. When k is of characteristic 2, ∆ simplifies to

sa,bsb,csa,c + s2
a,bsc,c + s2

a,csb,b + s2
b,csa,a = 0.

Moreover, the locus Σ of double lines is simply given by the equation

sa,b = sa,c = sb,c = 0.

These simplified formulas are the reason for which it is easier to construct examples
where Theorem 1.2 applies than where the original Artin–Mumford criterion applies.

4. COHOMOLOGY OF CONIC BUNDLES

In this section we collect preliminaries on the cohomology of conics and conic bun-
dles. We will fix an algebraically closed field k and a connected smooth k-variety B.

Lemma 4.1. Let i : C ↪→ P2
k be a conic defined by a sheaf of ideal IC ' O(−2). Then

the following computations hold.
(1) h0

C(OC) = 1 and h1
C(OC) = 0.

(2) h0
C(i∗Ω1

P2/k) = 0 and h1
C(i∗Ω1

P2/k) = 4.
(3) h0

C(i∗IC) = 0 and h1
C(i∗IC) = 3.

Proof. Part (1) follows from the exact sequence of coherent sheaves on P2

(4.2) 0→ OP2(−2)→ OP2 → i∗OC → 0

and the fact that

hiP2(OP2(−2)) = 0 for i ≥ 0, h0
P2(OP2) = 1, h1

P2(OP2) = h2
P2(OP2) = 0.

Now recall the Euler exact sequence

0→ Ω1
P2/k → OP2(−1)3 → OP2 → 0.

Pulling back to C, we find an exact sequence

0→ i∗Ω1
P2/k → i∗OP2(−1)3 → OC → 0

so that, thanks to (1), part (2) is reduced to show that

h0
C(i∗OP2(−1)) = 0, and h1

C(i∗OP2(−1)) = 1.

These in turn, follows from the exact sequence

0→ OP2(−3)→ OP2(−1)→ i∗OC(−1)→ 0,

obtained by tensoring (4.2) with OP2(−1), and the fact that

hiP2(OP2(−1)) = 0 for i ≥ 0, h0
P2(OP2(−3)) = h1

P2(OP2(−3)) = 0, h2
P2(OP2(−3)) = 1.

For (3), tensoring (4.2) with IC ' OP2(−2) we get an exact sequence

0→ OP2(−4)→ OP2(−2)→ i∗i
∗IC → 0,
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so the conclusion follows from the equalities

hiP2(OP2(−2)) = 0 for i ≥ 0, h0
P2(OP2(−4)) = h1

P2(OP2(−4)) = 0, h2
P2(OP2(−4)) = 3.

�

We now turn to some computations on the cohomology conic bundles. We will make
an extensive use of the following classical theorem; see [Mum08, Chapter II, §5, Corol-
lary 2].

Theorem 4.3. Let f : X → B be a flat proper morphism and let F be a coherent sheaf
over X flat over B. If hiXp

(Fp) is constant for every geometric point p ∈ B, then Rif∗F
is locally free and the natural map

Rif∗F ⊗ k(p)→ Hi(Xp,Fp)

is an isomorphism.

Proposition 4.4. Let X be a smooth k-variety and let f : X → B be a flat conic bundle
with smooth generic fiber. Then

(1) f∗OX = OB and Rif∗OX = 0 for i > 0;
(2) The right exact sequence

f∗Ω1
B/k → Ω1

X/k → Ω1
X/B → 0.

is also left exact.
(3) f∗Ω1

X/B = 0

(4) The natural maps

Ω1
B/k → f∗Ω

1
X/k and R1f∗Ω

1
X/k → R1f∗Ω

1
X/B

are isomorphism.

Proof. Part (1) follows directly from Theorem 4.3 and Lemma 4.1(1) (see also [Tan24,
Lemma 2.5]).

For (2), we have to show that the map f∗Ω1
B/k → Ω1

X/k is injective. Since both
sheaves are locally free, it is enough to check injectivity after the restriction to an open
subset of X . As f : X → B is generically smooth, we can assume that f is smooth and
in this case the sequence is also left exact (see e.g. [Sta18, Tag 02K4]).

Let us now show (3). Let E be a rank 3 vector bundle on B as in Definition 3.3.
In particular, there is a closed immersion i : X → P(E) over B, such that, for every
geometric point p ∈ B, the inclusion ip : Xp → P(E)p = P2 is the anticanonical
embedding of Xp. Let IX be the sheaf ideal of X in P(E). We have a right exact
sequence

i∗IX → i∗Ω1
P(E)/B → Ω1

X/B → 0

by [Sta18, Tag 01UZ]. We claim that it is also left exact, i.e. that i∗IX → i∗Ω1
P(E)/B

is injective. Indeed, since X ⊆ P(E) is a local complete intersection, i∗IX is locally
free ([Sta18, Tag 06B9]). Since also Ω1

P(E)/B is locally free, it is enough to show that
i∗IX → i∗Ω1

P(E)/B is injective on an open subset. Hence, we can assume that f is
smooth, where the conclusion follows from [Sta18, Tag 06AA].

We can now pushforward via f : X → B the short exact sequence

0→ i∗IX → i∗Ω1
P(E)/B → Ω1

X/B → 0
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to find a long exact sequence

0→ f∗i
∗IX → f∗i

∗Ω1
P(E)/B → f∗Ω

1
X/B → R1f∗i

∗IX → R1f∗i
∗Ω1

P(E)/B → R1f∗Ω
1
X/B → 0.

By Theorem 4.3 and Lemma 4.1(2), f∗i∗Ω1
P(E)/B vanishes. Hence f∗Ω1

X/B identifies
with the kernel of the map

R1f∗i
∗IX → R1f∗i

∗Ω1
P(E)/B.

We want to show that the map is injective. Since X → B is flat and IX is flat over B,
the restriction of IX to P(E)p identifies with the ideal defining Xp in P(E)p. Hence, by
Lemma 4.1 and Theorem 4.3, the coherent sheaves R1f∗i

∗IX and R1f∗i
∗Ω1

P(E)/B are
locally free, so it is enough to show injectivity on an open, hence to show the vanishing
of f∗Ω1

X/B on an open. We can then assume that f is smooth, in which case the fibers of
f∗Ω

1
X/B identifies with H0(P1,Ω1

P1/k) = 0, so we conclude again by Theorem 4.3.
Finally, let us now show (4). By (2), we have a short exact sequence

0→ f∗Ω1
B/k → Ω1

X/k → Ω1
X/B → 0.

Pushing forward, we get a long exact sequence

0→ f∗f
∗Ω1

B/k → f∗Ω
1
X/k → f∗Ω

1
X/B → R1f∗f

∗Ω1
B/k → R1f∗Ω

1
X/k → R1f∗Ω

1
X/B → 0.

By the projection formula and (1)

f∗f
∗Ω1

B/k ' Ω1
B/k ⊗ f∗OX ' Ω1

B/k and R1f∗f
∗Ω1

B/k ' Ω1
B/k ⊗R

1f∗OX = 0,

hence R1f∗Ω
1
X/k ' R

1f∗Ω
1
X/B and there is a short exact sequence

0→ Ω1
B/k → f∗Ω

1
X/k → f∗Ω

1
X/B → 0.

So the conclusion follows from (3). �

Corollary 4.5. Keep notation from the above theorem. Then the following holds.
(1) hiB(OB) = hiX(OX) for all i > 0 and h0

B(Ω1
B/k) = h0

X(Ω1
X/k).

(2) The natural map H0(B,Ωi
B/k)→ H0(X,Ωi

X/k) is injective for all i > 0.

Proof. Part (1) follows from the Leray spectral sequence for f : X → B and Proposition
4.4(1-3-4).

Let us now show (2). By Proposition 4.4(2) the natural map

f∗Ω1
B/k ↪→ Ω1

X/k.

is injective. Since these sheaves are locally free, we can pass to exterior powers and
deduce that the natural map

f∗Ωi
B/k ↪→ Ωi

X/k.

is injective. By the projection formula and Proposition 4.4(1), taking global sections
gives the conclusion. �

Corollary 4.6. Keep notation from the above theorem. Assume in addition that hiB(OB)
and h0

B(Ωi
B/k) vanish for i > 0. Then the following holds.

(1) hiX(OX) = 0 for every i > 0 and h0
X(Ω1

X/k) = 0

(2) If one has also h0
X(Ωi

X/k) = 0 for i > 0 then H1(X,Ω1
X/k) = H2

dR(X).
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Proof. Part (1) follows from Corollary 4.5(1).
Let us now show (2). By (1) and the assumption h0

X(Ωi
X/k) = 0 it is enough to show

that h1
X(Ω1

X/k) = dimk(H
2
dR(X)). Let Hi

X be the sheaf Hi(Ω•X) on X , so that there is
the conjugate spectral sequence

Ea,b2 := Ha(X,Hb
X)⇒ Ha+b

dR (X).

The Cartier isomorphism [Kat70, Theorem 7.2] shows that

dimk(H
a(X,Hb

X)) = dimk(H
a(X,Ωb

X/k))

In particular, by assumption, E0,b
2 for b > 0, so that there are no non trivial morphism

from or to H1(X,H1
X), hence E1,1

∞ = H1(X,H1
X). Moreover, by hypothesis, E2,0

2
vanishes as well, so we have

H1(X,H1
X) ' H2

dR(X).

To conclude the proof just observe that

dimk(H
1(X,H1

X)) = h1
X(Ω1

X/k)

again by Cartier. �

5. CRYSTALLINE ARTIN–MUMFORD CRITERION IN CHARACTERISTIC TWO

In this section we prove a characteristic 2 version of the Artin–Mumford theorem,
stating that, under some hypothesis on the discriminant, the total space of a conic bundle
has torsion in its cohomology. In Section 7 we will see that such a cohomological conse-
quence is an obstruction to the decomposition of the diagonal, hence to stable rationality.

We will make use of the locus of crosses and double lines on the base of a conic
bundles, as introduced in Definition 3.4.

Definition 5.1. Let f : X → B be a flat conic bundle with smooth generic fiber (Defini-
tion 3.3). Let D be a closed subvariety of the discriminant (Definition 3.4). We say that
D is Artin–Mumford if one of the following conditions holds.

(1) There exists a point p ∈ D, such that the fiber Xp is a double line.
(2) All fibers above D are crosses, D is smooth and the fibration XD → D is not a

product.

Theorem 5.2. Let k be an algebraically closed field of characteristic 2. Let f : X → B
be a flat conic bundle over k with smooth generic fiber between smooth, proper and
connected k-varieties. Assume the follwing.

(1) The discriminant is disconnected.
(2) There are two disctinct connected components of the discriminant of f which are

Artin–Mumford (Definition 5.1).
(3) The group H2(B,Ω1

B/k) vanishes.
(4) The groups Hi(B,OB) and H0(B,Ωi

B/k) vanish for i > 0.
(5) The groups H0(X,Ωi

X/k) vanish for i > 0.

Then H2d−2
crys (X)[2] 6= 0, where d is the dimension of X .

Proof. Let α ∈ H2d−2
crys (X) be the class from Definition 5.6. It is 2-torsion by Lemma 5.7.

On the other hand it is nonzero by Lemma 5.8. �
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Remark 5.3. The first three hypothesis in the above theorem are analogous to those of
the classical Artin–Mumford criterion, see Theorem 1.1. Hypothesis (4) can probably be
avoided with a more complicated proof but it is in practice verified by all the interesting
examples (e.g. B rational). Hypothesis (5) is the annoying one, as it concerns the total
space and not the base. On the other hand, for applications to rationality problems, both
(4) and (5) will disappear, see Theorem 7.10.

Definition 5.4. Let D be an Artin–Mumford component in the sense of Definition 5.1.
We define an half-fiber above D as a P1 inside X defined in the following way. If D
satisfies the hypothesis (1) of Definition 5.1 we take the fiber with its reduced structure
Xred
p . If D satisfies the hypothesis (2) we take any of the two irreducible components of

the cross above any closed point in D.

Remark 5.5. The name half fiber comes from the fact that, their class in cohomology is
indeed half of the class of the fiber. This definition a priori does depend on the choice of
the point p and not only on D, so it is a little abuse to call this the half fiber.

Definition 5.6. Keep notation from Theorem 5.2. Let D1 and D2 be the two connected
components of the discriminant from hypothesis (2) and let `1 and `2 the associated half
fibers as constructed in Definition 5.4. Let cl : CHd−1(X) → H2d−2

crys (X) be the cycle
class map to crystalline cohomology. Define the class α ∈ H2d−2

crys (X) as

α := cl(`1)− cl(`2).

Lemma 5.7. The class α is 2-torsion.

Proof. We claim that 2cl(`i) is the class of a fiber. This will conclude the prove as 2α
will then be the difference of two fibers, hence zero.

The claim is clear for a double line. In the case of a cross of lines, let us prove that the
assumption on the nontriviality of XD → D implies that cl(`i) = cl(mi) where mi is
the other P1 in the same fiber. (This will imply that 2cl(`i) = cl(`i) + cl(mi) is indeed
the class of a fiber.)

Let π : D̃i → Di the double cover trivializing the conic bundle on Di. Let X̃ the
normalisation of the pull-back of the conic bundle on D̃i. Let us fix one P1 in X̃ which is
sent isomorphically to `i and let us call it ˜̀

i. In the same fiber as ˜̀
i the other irreducible

component is denoted by m̃i and it is sent isomorphically to mi. Let g be the involution
on X̃ above X . Now, because the fibration over Di is not trivial, we have that g∗cl(˜̀

i) =
cl(m̃i). If we push forward this relation we get

cl(`i) = π∗cl(˜̀
i) = (π ◦ g)∗cl(˜̀

i) = π∗cl(m̃i) = cl(mi).

�

Lemma 5.8. The class α from Definition 5.6 is nonzero.

Proof. It is enough to show that the image of the class α via the natural application
H2d−2

crys (X)→ H2d−2
dR (X) is nonzero. To prove that α is nonzero in de Rham cohomology,

it is enough to construct a class β ∈ H2
dR(X) such that (α, β) = 1, where (−,−) :

H2d−2
dR (X)×H2

dR(X) is the Poincaré duality pairing. On the other hand, by Corollary 4.6,
there is an identification H2

dR(X) = H1(X,Ω1
X/k), hence it is enough to construct a class

β ∈ H1(X,Ω1
X/k). Such a class β can be taken to be as one of the classes appearing in

Lemma 5.9(3) and we indeed have (α, β) = 1 by Lemma 5.10. �
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Lemma 5.9. Let s : B → X be a degree 2 multisection of the conic bundle f . Define
the class β′ ∈ H1(X,Ω1

X) as β′ := cl(s(B)). Consider the edge map

Edge : H1(X,Ω1
X/k)→ H0(B,R1f∗Ω

1
X)),

for the Leray spectral sequence for f : X → B

Ea,b2 := Ha(B,R1f∗Ω
1
X/k)→ Ha+b(X,Ω1

X/k).

Then the following holds.
(1) Let U ⊂ B the open subset on which f : X → B is smooth. Then, the restriction

of Edge(β′) to H0(U,R1f∗Ω
1
XU/k

) is zero.

(2) There exists a unique class β̃ ∈ H0(X,R1fΩX/k
) such that its restriction to

H0(X−D1, R
1fΩX/k

) vanishes and its restriction to H0(X−(
∐
i 6=1Di), R

1fΩX/k
)

equals to Edge(β′).
(3) Edge : H1(X,Ω1

X/k) → H0(B,R1f∗Ω
1
X/k)) is surjective. In particular, there

exists a class β in H1(X,Ω1
X/k) such that Edge(β) = β̃.

Proof. By Proposition 4.4 there is a canonical isomorphismR1f∗Ω
1
XU/k

' R1f∗Ω
1
XU/U

.
In particular, thanks to Theorem 4.3, the coherent sheaf R1f∗Ω

1
XU/U

is locally free so
that it is enough to show that the restriction of Edge(β′) to the fiber Xη over the generic
point η ∈ B is zero. But this identifies with the class of a point of the smooth conic
Xη defined over a degree 2 extension. Hence it is divisible by 2, hence it is zero in
H1(Xη,Ω

1
X/k(η)), which proves (1). Point (2) follows from (1) and the assumption on

the discriminant.
The low degree terms from the Leray spectral sequence show that the obstruction to

the surjectivity of part (3) is H2(B, f∗Ω
1
X/k), which by Proposition 4.4 is isomorphic to

H2(B,Ω1
B/k), which vanishes by assumption. �

Lemma 5.10. The Poincaré pairing (α, β) equals 1.

Proof. Since (α, β) = (cl(`1), β)− (cl(`2), β) is it enough to show that (cl(`1), β) = 1
and (cl(`2), β) = 0. To do this recall that (cl(`i), β) = β|`i ∈ H1(`i,Ω

1
`i/k

) = k and that
β|`i = Edge(β)|`i . Now, we have

β|`1 = Edge(β)|`1 = Edge(β′)|`1 = (cl(s(B)), `1) = 1

since the multisection intersects in 1 point with multiplicity 1 the irreducible components
of f−1(p1)red (as it intersect with multiplicity 2 any fiber). On the other hand

β|`2 = Edge(β)|`2 = 0

since, by construction, Edge(β) vanishes on H0(B −D1, R
1f∗ΩX/k). �

6. SEPARATION OF THE DISCRIMINANT DIVISOR

In order to apply Theorem 5.2 one needs, among other things, a conic bundle with
disconnected discriminant. The goal of this section is the construction of a birational
transformation allowing to modify a conic bundle with several irreducible components
into one with several connected components. We fix an algebraically closed field k and
a smooth connected k-variety B.
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Elementary transformations. We recall here generalities on elementary transforma-
tions, see [Mar82, Section 1] for details. Let T ⊂ B be a Cartier divisor, F be a nonzero
vector bundle on T and g : E|T → F be a surjection. The kernel of g is a subvector bun-
dle Y ⊂ E|T . The elementary transformation of E along Y is then the rank 3 subvector
bundle ElY(E) ⊂ E on B given by

ElY(E) := Ker(E→ E|T → F).

The inclusionElY(E) ⊂ E induces a birational mapElY(E)→ E, which can be explicitly
described Zariski locally and it is an isomorphism outside T , see [Mar82, Lemma 1.5].

More precisely, assume that B = Spec is affine, P(E) = Proj(A[a, b, c]) and that T
is defined by t = 0 for some t ∈ A. If Y is defined by t, a, then P(ElY(E)) is defined
by Proj(A[ta, b, c]) and the birational map P(ElY(E)) → P(E) is induced by sending a
to ta. If Y is defined by t, a, b, then P(ElY (E)) is defined by Proj(A[ta, tb, c]) and the
birational map P(ElY (E))→ P(E) is induced by sending a to ta and b to tb.

Proposition 6.1. Let f : X → B be a generically smooth conic bundle. Let ∆ be the
discriminant divisor (Definition 3.4). Assume the following.

(1) One can write ∆ = D1 ∪D2 as the union of two closed subvarieties.
(2) D1 and D2 are smooth around D1 ∩D2 and intersect transversally.
(3) All the fibers above D1 ∩D2 are crosses.

Let P be the blow-up of B along D1 ∩D2 and E be the exceptional divisor. Then there
exists a conic bundle g : Y → P whose discriminant divisor is the (disjoint) union of the
strict transforms of D1 and D2 and such that the restrictions to P − E of g and of the
pull-back fP : XP → P of f coincide.

Proof. Let q : S2(E) → L be the quadratic form corresponding to fP : XP → P . By
hypothesis the fibers of the restriction fE : XE → E are crosses. By [Tan24, Proposition
2.14(2)], the set Y ⊂ P(E|E) of points living above E which are singular in the fiber is
the projectivization of a rank 1 subvector bundle of F∨ ⊂ E∨|E . Consider the surjection
E|E → F and let Y be the kernel.

Let Ẽ := ElY(E) ⊂ E be the elementary transformation of E along Y and define
q̃ : S2(Ẽ) → L to be the restrition of q to S2(Ẽ). Let s ∈ H0(P, S2(Ẽ∨) ⊗ L) be the
section corresponding to q̃. We claim that its restriction s|E to E vanishes with order
exactly 2. Assuming the claim s induce a section in H0(B,S2(Ẽ∨) ⊗ L ⊗ OP (−2E))

which in return induces a quadratic form q̃(E) : S2(Ẽ⊗OP (E))→ L. By construction,
the new quadratic form q̃(E) has discriminant divisor equal to the strict transform of ∆.
Moreover, no modification has been done outside P − E, hence this will conclude the
proof.

The claim can be proved locally in a neighborhood of E, so we can replace B with the
completion of OB,D1∩D2 and then this with its strictly henselianisation A. By [Tan24,
Proposition 2.14(2)], we can then assume that X = Proj(A[a, b, c]/αc2 − ba) for some
α ∈ A.

Let t1, t2 be the local parameter of D1 and D2. By assumption α = α′t1t2, for some
α′ ∈ A∗. Since P ⊂ B × P1

t̃1,t̃2
is defined by t̃1t2 = t̃2t1, it will be enough to show

that s vanishes with order exactly 2 on t1 = t2 = 0. By symmetry, it is enough to do the
computation in the affine chart t̃1 = 1.
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In this chart, XP has equations Proj(A[a, b, c]/α′t̃2t
2
1c

2 − ba) and Y has equations
a = c = t1 = 0. Hence the elementary transformation Ẽ is

Proj(A[a, b, c]/α′t̃2t
2
1c

2 − t1bt1a),

which vanishes with order exactly 2 along t1 = 0. �

Remark 6.2. We do not know a statement analogous to Proposition 6.1 under the as-
sumption that the fibers on the intersectionD1∩D2 might be nonreduced. A very general
statement as Proposition 6.1 cannot be true, but it would be very useful to find conditions
where such a birational separation exists. The main motivation is the construction of
more examples to which Theorem 5.2 applies. For instance, it is very easy to construct
conic bundles with reducible discriminant and such that all the singular fibers are nonre-
duced, see Remark 8.9.

7. AN OBSTRUCTION TO THE DECOMPOSITION OF THE DIAGONAL

In this section we recall the definition of the decomposition of the diagonal, which
is intimately related to rationality question, following Voisin [Voi15] and [CTP16]. We
give a cohomological obstruction to the decomposition of the diagonal (Proposition 7.6
and Proposition 7.9) and give geometric settings where this obstruction can be applied
(Theorem 7.10, its corollary and Theorem 7.12).

Definition 7.1. Let X be a smooth proper geometrically connected scheme over a field.
Consider the Chow ring CH(X×X) ofX×X with integral coefficients and the class of
the diagonal ∆X ∈ CH(X ×X) in it. We say that X has decomposition of the diagonal
if there exists a relation

∆X = B1 +B2

in CH(X ×X) where the projection to the first factor of B1 is supported on a scheme of
dimension zero and the projection to the second factor of B2 is not the whole X . If such
a relation does not exist we say that X has no decomposition of the diagonal.

The relative version of the previous definition turns out to be the following.

Definition 7.2. A proper map f : X → Y over a field k is called universally CH0-
trivial if, for all field extension L/k, the pushfoward map induced by f on Chow groups
(fL)∗ : CH0(XL)→ CH0(YL) is an isomorphism.

A proper variety Z over k is said to be universally CH0-trivial if the structural map
f : Z → Spec(k) is so.

Theorem 7.3. [Voi15, CTP16].
(1) The group CH0 is a birational invariant for smooth proper varieties [Ful98, Ex-

ample 16.1.11], in particular being universally CH0-trivial is a birational in-
variant for smooth proper varieties over a field.

(2) For a smooth proper and geometrically connected variety over a field being uni-
versally CH0-trivial is equivalent to having the decomposition of the diagonal
[CTP16, Proposition 1.4]. In particular having the decomposition of the diag-
onal is a birational invariant for smooth proper and geometrically connected
varieties.

(3) A variety which has no decomposition of the diagonal is not stably rational
[CTP16, Lemma 1.5].
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Definition 7.4. Let X and Y be proper varieties defined over a (possibly different) field.
We say that X degenerates to Y if there exist a discrete valuation ring R and proper
faithfully flat scheme over Spec(R) whose generic fiber is X and whose special fiber is
Y .

Theorem 7.5. [CTP16, Theorem 1.14]. Let X and Y be proper geometrically integral
varieties with X smooth. Suppose tha X degenetes to Y and that Y admits a desingu-
larization π : Ỹ → Y such that π is universally CH0-trivial. Suppose that Y has no
decomposition of the diagonal (in the sense of Definition 7.1). Then X has no decompo-
sition of the diagonal.

Motivated by Theorem 5.2, we now explain how torsion in crystalline cohomology
obstructs the decomposition of diagonal. This is the combination of [AV25, ABBvB21,
CR11, Tot16].

Proposition 7.6. Let k be an algebraically closed field of characteristic p > 0 and X be
a smooth proper and connected k-variety. Assume that H3

crys(X)[p] 6= 0. Then X has no
decomposition of the diagonal.

Proof. It is enough to combine [AV25, Theorem 1.1.5] with the following Theorem 7.7.
�

Theorem 7.7. [ABBvB21, CR11, Tot16]. Assume that X has decomposition of the di-
agonal. Then the following holds.

(1) H0(X,Ωi
X) = 0 for i ≥ 1.

(2) Br(X) = 0.
(3) Hi(X,OX) = 0 for i ≥ 1.

Proof. Observe that (1) is [Tot16, Lemma 2.2] and (2) is [ABBvB21, Theorem 1.1]. For
(3), let α be any class in Hi(X,OX). Consider the action of correspondence on Hodge
cohomology and let us use the relation from Definition 7.1. We get

α = ∆∗Xα = B∗1α+B∗2α.

Since the action of B1 factors through a scheme of dimension zero, we get B∗1α = 0.
Since B2 does not dominate the second factor we have B∗2α = 0, by [CR11, Proposition
3.2.2]. This implies α = 0 and proves (3). �

Lemma 7.8. LetX be a smooth proper and connected variety of dimension d over an al-
gebraically closed field k of characteristic p > 0. Then the k-vector spaces H2d−2

crys (X)[p]

and H3
crys(X)[p] have the same dimension.

Proof. This follows from Poincaré duality in the form stated in [Ber74, Théoréme 2.1.3,
Page 555] and the universal coefficients theorem. �

Proposition 7.9. Let X be a smooth proper and connected variety of dimension d over
an algebraically closed field k of characteristic p > 0. Assume that H2d−2

crys (X)[p] 6= 0.
Then X has no decomposition of the diagonal.

Proof. This is the combination of Proposition 7.6 and Lemma 7.8. �

Now Theorem 5.2 can be stated in a more geometric way.

Theorem 7.10. Let k be an algebraically closed field of characteristic 2 and consider a
flat conic bundle f : V → B over k with smooth generic fiber between smooth proper
k-varieties. Assume the follwing.
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(1) The discriminant is disconnected.
(2) There are two disctinct connected components of the discriminant of f which are

Artin–Mumford components (Definition 5.1).
(3) The group H2(B,Ω1

B/k) vanishes.

Then V has no decomposition of the diagonal.

Proof. This is the combination of Theorem 5.2 with Proposition 7.9 up to the fact that
hypothesis (4) and (5) of Theorem 5.2 are no longer necessary. Indeed, if (5) is not
satisfied then V has no decomposition of the diagonal (automatically, without the need of
the other hypothesis) because of Theorem 7.7(1). Similarly, if (4) is not satisfied, then V
has no decomposition of the diagonal by Theorem 7.7(1) combined with Corollary 4.5(2)
and Theorem 7.7(3) combined with Corollary 4.5(1). �

Corollary 7.11. Let V be as in Theorem 7.10. Let X be a smooth proper geometrically
connected variety (defined over a field in characteristic zero or two). Suppose that X
degenerates to a variety Y which is birational to V and which has a disingularization
π : Ỹ → Y such that π is universally CH0-trivial (Definition 7.2). Then X has no
decomposition of the diagonal.

Proof. Having decomposition of the diagonal is a birational invariant (Theorem 7.3) so
Ỹ has no decomposition of the diagonal by Theorem 7.10. We can conclude using The-
orem 7.5. �

For conic bundles over surfaces the irrationality criterion can be made easier to apply
(see Remark 7.13 for comments).

Theorem 7.12. Let k be an algebraically closed field of charecteristic two, S be a smooth
proper surface and f : V → S be a flat conic bundle with smooth generic fiber. Assume
the following.

(1) The group H2(S,Ω1
S/k) = 0.

(2) The discriminant divisor is reducible and the singular locus of each irreducible
component of the discriminant is contained in the set of points whose fibers are
double lines.

(3) The irreducible components of the discriminant meet transversally and the fibers
above the intersections are crosses.

(4) There are at least two irreducible components which are Artin–Mumford in the
sense of Definition 5.1.

(5) V is smooth around the fibers of double lines.
Then V has desingularization π : Ṽ → V such that π is universally CH0-trivial and Ṽ
has no decomposition of the diagonal. In particular, any smooth variety (in characteristic
zero or two) that degenerates to V has no decomposition of the diagonal hence it is not
stably rational.

Proof. Consider the points {Pi} in S of intersection of two components of the discrim-
inant. Above each point Pi there is a unique point Qi which is singular in the fiber (as
the fiber is a cross). We claim that the singular points of V are exactly the {Qi} and that
their are ordinary quadratic singularities. Under this claim we can resolve the singular-
ities by simply blowing-up those points. Moreover the exceptional divisors are regular
quadrics, hence rational, which implies that the map of desingularization is CH0-trivial
by [CTP16, Proposition 1.8]. On the other hand the resolution Ṽ has no decomposition
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of the diagonal. Indeed by Proposition 6.1 it is birational to a conic bundle satisying the
hypothesis of Theorem 7.10. We can conclude using Theorem 7.5.

We have to show the claim. This is essentially [Tan24, Theorem 2.14]. Indeed let
us write t1, t2 for the formal coordinates around a fixed point Pi where the vanishing
of a ti corresponds to an irreducible component of the discriminant. Let a, b, c be the
coordinates of the conic bundle. Then the proof in loc. cit. shows that the local equation
of V in the tube above the formal neighborhood around Pi is αa2 + bc = 0 where α is
the discriminant. Hence in this case we have the equation t1t2a2 + bc = 0. This implies
that the local affine equation around Qi is t1t2 + bc = 0, which gives the claim. �

Remark 7.13. One of the good features of Theorem 7.12 with respect to the previous
ones, is that the discriminant does not need to be disconnected. Also the smoothness
assumption on the total space is easier to check as it is reduced to the hypothesis (5) (and
partially (2)).

8. CONCRETE EXAMPLES

In this section we construct explicit examples where Theorem 7.12 applies and deduce
from it irrationality results, both in characteristic two and zero (Theorem 8.5). All these
examples are in characteristic two and have P2 as base. We will use x, y, z for the co-
ordinates on the base P2. The points on which the fibers are double lines will always be
[0 : 1 : 0] and [0 : 0 : 1]. The total space will be regular above these two points. The
discriminant will have two components, each one passing in exactly one of these two
points and being singular only there.

Once the examples are found, verifying that they do satisfy these conditions (and hence
the hypothesis of Theorem 7.12) is an elementary computation based on the Jacobian
criterion and on the description of the loci ∆ and Σ (of Definition 3.4) using formulas
from Remark 3.6. We do not write these computations.

The way the examples were found was by first guessing the possible discriminants and
then finding the coefficients that such a conic bundle should have. With no surprise then,
the former have easier equations than the latter. To guess discriminants, it was useful to
have the restrictions from [ABBGvB21, Theorem 4.3] describing the local behaviour of
∆ around Σ.

We also write a last example, taken from [ABBvB21], where one of the two compo-
nents of the discriminant has only crosses but the family over it is not a product. That
example was found using Magma, as the authors explain. The coefficients there are easier
than the discriminant.

Example 8.1. Let B = P2 with coordinates x, y, z. Consider the conic bundle defined
by

O O(1) O(3)
O 1

O(1) x zy
O(3) 0 x(y3 + z3) + y2z2 y6 + z6 + x4yz + xz5 + xy5

then the discriminant is

∆ = (x3z + y4)(x3y + z4).
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Remark 8.2. Let us explain how to find such an example. Write

O O(1) O(3)
O 1

O(1) x α
O(3) 0 β γ

for a general matrix of this form. The discriminant is x2γ + β2. First notice that α does
not appear in the discriminant: its choice will only matter for the smoothness of the total
space. Then one is looking for the following two conditions.

(1) β = x = 0 consists exactly of the two points [0 : 1 : 0] and [0 : 0 : 1].
(2) (x3z + y4)(x3y + z4) + β2 is divisible by x2: the quotient will then be γ.

Relation (2) simply becomes: β is y2z2 modulo x.

Example 8.3. Let B = P2 with coordinates x, y, z and let g be an homogenous polyno-
mial of degree 2.

O O(1) O(3)
O 1

O(1) x g
O(3) 0 x(y3 + z3) + y2z2 y6 + z6 + x4yz + xz5 + xy5.

Since the term g does not appear in the equation of the discriminant the factorization

∆ = (x3z + y4)(x3y + z4)

still holds. Hence, every time this conic bundle is smooth around [0 : 1 : 0] and [0 : 0 : 1]
one can apply Theorem 7.10. Observe that, the open set of polynomials g satisfying this
smoothness condition is nonempty by the previous example.

Example 8.4. B = P2 with coordinates x, y, z. Consider the conic bundle with value in
O(1) defined by

O(1) O(1) O(3)
O(1) x+ y
O(1) x x
O(3) 0 x(y2 + z2) + y((x+ z)z + (z + y)y) f

where

f = x2yz2 + x2z3 + xy4 + xy3z + xz4 + y5 + y2z3 + yz4 + z5.

Then the discriminant is

∆ = (x2z + xy2 + y3)(x2yz + x2z2 + y4 + y2z2 + z4).

This example can be found following the strategy from Remark 8.2.

Theorem 8.5. Let k be a field of characteristic zero or two. A very general conic bundle
in P(O⊕ O(1)⊕ O(3)) over P2

k with values in O has no decomposition of the diagonal,
hence it is not stably rational.

Similarly, a very general conic bundle in P(O(1)⊕O(1)⊕O(3)) over P2
k with values

in O(1) has no decomposition of the diagonal, hence it is not stably rational.

By very general we mean that the coefficients of the polynomials defining the conic
bundle are algebraically independent over the prime field.
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Proof. It is enough to degenerate such a very general conic bundle to the above examples
8.1 and 8.4 and apply Theorem 7.12. �

Example 8.6. B = P2 with coordinates x, y, z. Consider the conic bundle defined by

O(1) O(1) O(1)
O(1) y2 + j2z2

O(1) xz yz
O(1) jx2 + yz xy z2 + jy2

with j such that j2 + j + 1 = 0. Then the discriminant is

∆ = (x2z + y3)(x2y + z3)

Remark 8.7. In order to find such an example, the strategy from Remark 8.2 has to be
modified because there is no zero in the matrix. The idea is similar, write

O(1) O(1) O(1)
O(1) α
O(1) γ′ β
O(1) β′ α′ γ

for a general matrix of this form. First impose that the conics α′, β′and γ′ meet exactly
in [0 : 1 : 0] and [0 : 0 : 1]. Then complete the matrix so that the discriminant has the
desired form ∆ = (x2z + y3)(x2y + z3). (As already mentioned, such form is guessed
based on [ABBGvB21, Theorem 4.3].) It is harder to implement this strategy.

An example of this shape might exists over P3 (i.e. the quadric surfaces α′, β′and γ′

meet in a finite number of points and the discriminant has two irreducible components
above which only crosses lie.) This would be of great interest as one would find a variety
of dimension four which is irrational because of an H3. Arguing through weak Lefschetz
one could hope to have examples in any dimension.

The above example also gives the stable irrationality of some very general conic bun-
dles but this is already in [ABBvB21], based on the following example (and a different
rationality obstruction).

Example 8.8. [ABBvB21, Section 6] Consider the conic bundle

O(1) O(1) O(1)
O(1) xy + xz + z2

O(1) x2 + xz + z2 x2 + yz + z2

O(1) xy x2 + yz + z2 y2 + xz + z2

with discriminant

∆ := xz(x+ z)(y2x+ x2y + xyz + z2x+ y3).

The fibration is not trivial on (y2x+ x2y+ xyz+ z2x+ y3) by [ABBvB21, Lemma 6.8
and Proposition 6.9]. The other three component of the discriminant meet in exactly one
point whose fiber is a double line (and the total space is regular there).

Remark 8.9. In characteristic two, it is very easy to construct examples of conic bundles
over Pn (for any n) with reducible discriminant and only double lines over it. It is enough
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to take a conic bundle of the form

O O(n1) O(n2)
O 1

O(n1) ab c
O(n2) 0 0 d

and check that the discriminant (with reduced structure) is ab and has the desired prop-
erties. For generic choices of c, d the total space of the conic bundle will also be regular
(except above the intersection of the two components a = 0 and b = 0). Unfortunately
we do not know how to link any of such a construction to Theorem 7.10. What is missing
is a birational transformation allowing to separate the two components a = 0 and b = 0,
see Remark 6.2.
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